

Solution-orientated concepts: the integration of information received via communication equipment with onboard navigational systems

Eric Holder & Florian Motz

E-Navigation Underway 2013 MS Pearl Seaways, January 30, 2013


Agenda

- 1. Overview
- 2. Defining the problem and requirements
- 3. Overall concept for integration and presentation
- 4. Identifying and evaluating potential solutions
- 5. Selected example solutions

1. Overview - situation onboard

The current separation of communication systems and navigational systems doesn't meet the requirements of safe navigation to include all means and information in the decision making.

1. Overview- Solution

Integration and presentation of available information received via communication equipment in graphical displays IMO (NAV 58/WP.6/Rev.1)

Core-elements:
Integrated Navigation System
&

Management of Information Received via Communication Equipment

ECDIS, Radar, Conning - SAM Electronics

2nte **

Bundesministerium für Verkehr, Bau und Stadtentwicklung

2. Defining the Problem and Requirements

- Define the information, context, and problems
 - Literature review, mariner interviews
 - Equipment review considering GMDSS, MSI, radio watch, distress communications, chargable services, etc.
 - Work domain analysis (by voyage phase with mariner validation)
 - Classification of information by categories, INS task supported, and presentation options
- Consider regulatory requirements and changes
 - SOLAS Chapter IV and V
 - Existing bridge design requirements

2. Defining the Problem and Requirements



- Define initial user requirements
 - Surveys, interviews, onboard observation, human factors review, participation in IMO e-Nav activities (gap analysis)
 - Global E-Navigation User needs survey
 - Task-orientated bridge design requirements (IMO, past INS research)
 - Communication management requirements and concept
 - Information requirements
 - HMI requirements (task analysis, ACWA, EID)
 - Data structure requirements and options (IHO, IALA, WIS, S-10x)
- Risk Analysis and Risk Control Options
 - External information presented via onboard navigation displays
 - Onboard navigation information transmitted to external parties

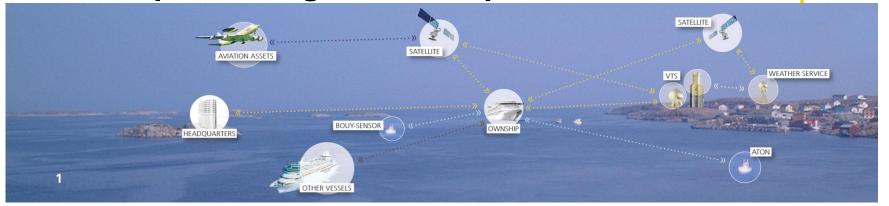
3. Concept for integration and presentation

- Do not repeat old mistakes:
 - lack of standardization, inconsistent presentation of information, unnecessary level of complexity, information overload
- Need to consider:
 - content, timing, workflow, presentation format, and relationship to tasks and overall bridge resource management

ECDIS, Radar, Conning - SAM Electronics

3. Concept for integration and presentation

- Task-oriented integration of information received via communication equipment in shipboard navigation systems
- User-selectable filtering and routing of information to prevent information overload
- Data evaluation (quality assurance) and storage
- Provision of source and channel management (selection of best connection according criteria, e.g., content, integrity, costs)
- Increased availability and reliability of information due to efficient use of different communication channels



ECDIS, Radar, Conning - SAM Electronics

3. Concept for integration and presentation

Prioritized Focus Areas:

- Geo-referenced locations to avoid or with procedures/activities (MSI)
- Safe depth information, Air Gap information
- Alterations to ownship route
- Collision avoidance information
- Hydrographical, Weather data, Ice information
- Message/Information Handling Interface

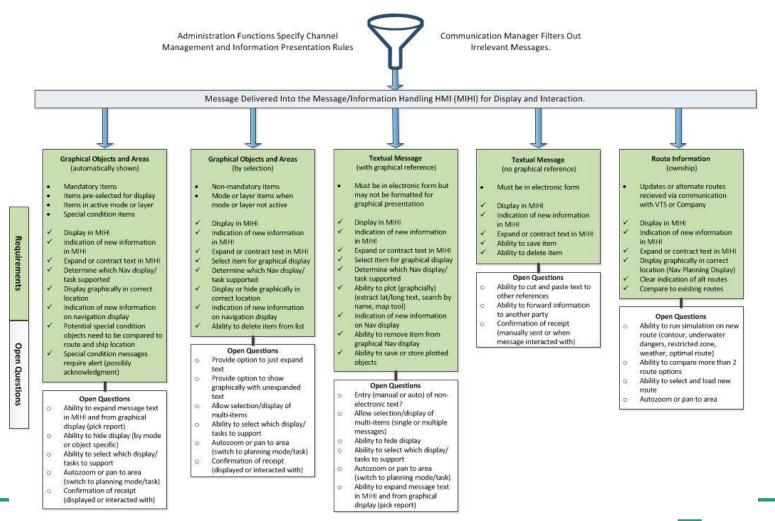
- Identification of existing functionality, prototypes and testbeds to support evaluations
- Development of prototype Message/Information Handling Human Machine Interface (HMI)
- Route Exchange evaluation at Chalmers Technical University
- Focus-Group Discussion with Maritime Pilots
- Simulator Evaluation and Interviews at WMU
- Human Factors heuristic evaluation and comparison of identified solutions

5. Example Solution 1

Concept: Large amounts of information are, and will be available, but

Not all available information

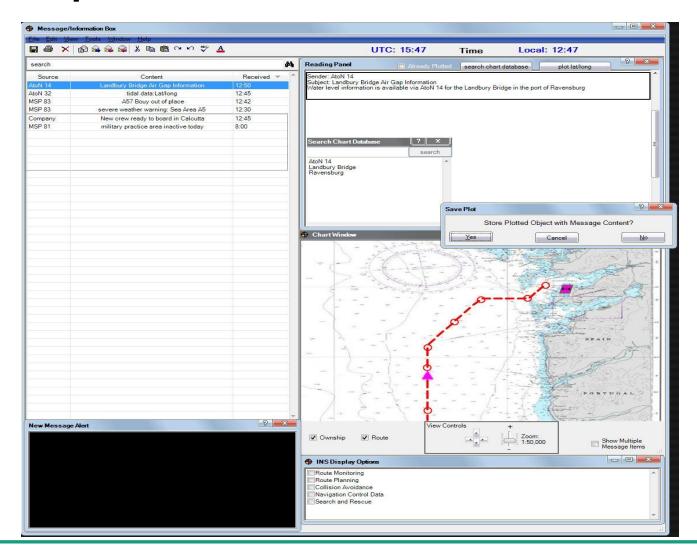
- should be presented on INS
- is relevant to every INS display (task)
- is relevant to every voyage/situation
- will arrive appropriately formatted


An interface will be required to manage communicated information:

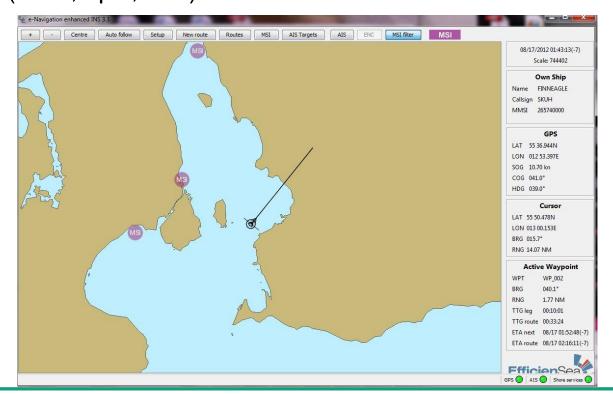
SOLUTION: Message/Information Handling Human Machine Interface (MIHI)



Message/Information Handling Human Machine Interface Functional Requirements for Navigation Information



Further Considerations (examples):


- Allow for user-friendly follow-up communications to confirm receipt, agreement (non), and clarify content.
- For evolving situations (e.g., SAR, drifting hazards, etc.) provide option to select and monitor the situation
- Further research concerning automatic updating, deleting, and removing messages and message content as situation changes (resolved, terminated).
- Optimal indication of new information based on:
 - Message type and content
 - User preferences
 - Most effective
 - Least distracting (current audio overload)

5. Example Solution 2—Maritime Safety Information

Concept: Communications received from sources not onboard containing updates with geo-referenced locations to avoid (hazards or regulations) or with special procedures (e.g., speed or fuel restrictions) or special activities underway (SAR, spill, etc.).

The ee-INS (e-Navigation Enhanced Integrated Navigation System) DMA

5. Example Solution 2—Maritime Safety Information

Message Content/Presentation Requirements for INS:

- Format and transmit message content location electronically in reference to known reference system, allowing graphical display
- Show additional text-based information on selection via MIHI or pick report-like functionality
- When presented on navigation display provide clear indication that new content has been added.
- Provide contact information for source (name, affiliation, and position)
- Etc.

5. Example Solution 2—Maritime Safety Information

Features and Functionality Requirements (Examples):

- Ensure integration of new MSI content with existing content and functionality:
 - Route Planning (distance measuring, route check)
 - Route Monitoring
 - Chart Radar (EBL, VRM)
- Upon receipt system should automatically evaluate for applicability and potential hazards to planned route
 - Provide alert for imminent risks
- Provide ability to save the MSI and message content to the voyage record
- Etc.

Bundesministerium für Verkehr, Bau und Stadtentwicklung

5. Example Solution 2—Maritime Safety Information

Further Investigation (Examples):

- Requirements for alert and warning functions based on content and situation.
 - Direct hazard, less direct threats, user preferences
 - Accident and incident prevention, reduce WL
 - Consider current alarm overload situation
- Use of existing chart symbols or one generic marker to identify location or combination
- Determine which stakeholders represent a competent authority
- Etc.

Example Solution 2—Maritime Safety Information

Risks and Concerns (Examples):

- Clutter and information overload
 - Especially when directly plotted on INS
 - Implement and test intelligent filter
- Critical content not presented, perceived, or used
 - Filter rules, distraction, obscuring existing data
- Content misinterpreted or misunderstood
 - Meaning of content
 - Relationship to other content
- Available display options unclear or unknown
- Etc.

Thank you for your attention.

Eric Holder, Ph.D

eric.holder@fkie.fraunhofer.de

Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE Germany

Florian Motz

florian.motz@fkie.fraunhofer.de

Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE Germany

