
Proceedings of the 20th IALA Conference 2023
Rio de Janeiro, Brazil 27 May – 3 June 2023

Paper No. XXX (to be assigned by the IALA secretariat)

XXX-1

Harmonized Visual AtoN IoT Protocol

Jonas LINDBERG
SPX Aids to Navigation Oy, Marine

Höylänlastu 2A, 06150 Porvoo FINLAND
jonas.lindberg@spx.com

Erkki MOORITS
SPX Aids to Navigation OÜ, Marine

Mäealuse 2/1, 12618 Tallinn ESTONIA
erkki.moorits@spx.com

ABSTRACT

Marine Aids to Navigation (AtoN) have often been early adopters of new technologies. Since the 1980s, remote
monitoring of marine signal lanterns has been available as a tool to track the availability of AtoN and predict
maintenance needs. Remote Control has also been implemented in some applications. Today, there are
various solutions available on the market based on Satellite Communication, GSM mobile networks, Point-to-
Point short-range radio communication, as well as AIS transponders.

However, current communication topologies often have a low reporting frequency due to the limitations of
data communication costs or energy constraints. Status reports are typically only transmitted when lights turn
on in the evening and turn off in the morning, with additional ad hoc reports transmitted when an issue is
detected by the station (e.g., position, energy or light operation related). Additionally, many current
conventional communication systems have a limitation in the number of communication sessions they can
manage, so reporting frequency is not only limited by outstation constraints.

As a result, the owner of the asset always has outdated information and no real-time situational awareness.
They may also not be able to detect a malfunction of an AtoN in a timely manner. Due to the lack of industrial
standards, each vendor operates a proprietary protocol and system, making it difficult for the owner of assets
to mix devices in the field.

In this paper, we will demonstrate how modern and true IoT (Internet of Things) technology can be
implemented to overcome all the current limitations and issues.

We will demonstrate that we are able to resolve two of the main issues in existing remote monitoring
technologies;

1. Implementing a new, open, secure and standardized non-propriety communication protocol used by a
huge number of existing IoT devices, and

2. Utilizing modern IoT platforms like LTE-M and LoRaWAN achieving communication close to real time
without driving data costs and energy consumption

This new method enables the Marine Signal lanterns to enter the real IoT era we have seen moving quickly
into other industrial fields.

KEYWORDS: IoT, connected visual aids, harmonized protocol, remote monitoring and control

__

XXX-2

1 STANDARDIZED PROTOCOL

There are various communication protocols used in IoT and IIoT (Industrial IoT). The most appropriate protocol
for a particular case depends on factors such as data rate, security, power consumption, compatibility, and
complexity.

For the Visual AtoN IoT harmonization, the MQTT (Message Queuing Telemetry Transport) protocol is
proposed as the best suited protocol. This protocol is optimal for small low-power applications and is one of
the most commonly used communication protocols. It can be implemented in ultra low-power microcontroller
applications, and on the server side, the MQTT broker is straightforward to establish and integrates well with
an already established remote monitoring system.

1.1 MQTT

MQTT is a lightweight publish/subscribe messaging protocol designed for use in low-bandwidth, high-latency,
or unreliable network environments. It was originally developed by IBM in the late 1990s and has since become
an open standard maintained by the OASIS consortium.

The MQTT protocol operates on top of TCP/IP and uses a publish/subscribe messaging model, where
publishers send messages to a broker, which then distributes those messages to interested subscribers. The
broker acts as an intermediary between publishers and subscribers, allowing messages to be sent and received
even if the publisher and subscriber are not connected at the same time.

Here is how the MQTT protocol works in more detail:

1. Clients: MQTT clients can be either publishers or subscribers. Publishers are responsible for sending
messages to the broker, while subscribers are interested in receiving those messages.

2. Broker: The MQTT broker acts as a mediator between publishers and subscribers. It receives messages
from publishers and then distributes them to subscribers that have expressed an interest in those messages.

3. Topics: Messages are sent and received on topics, which act as channels for communication. Topics are
hierarchical in nature, allowing for the creation of a tree-like structure that can be used to organize messages
by topic.

4. Quality of Service (QoS): MQTT supports three levels of Quality of Service (QoS) for message delivery:
QoS 0, QoS 1, and QoS 2. QoS 0 provides at most once delivery, QoS 1 provides at least once delivery, and QoS
2 provides exactly once delivery.

5. Keep Alive: MQTT uses a Keep Alive mechanism to ensure that clients remain connected to the broker
even if there is no data to transmit. Clients send periodic PINGREQ messages to the broker to indicate that
they are still connected.

6. Last Will and Testament (LWT): MQTT supports a Last Will and Testament (LWT) feature that allows a
client to specify a message that will be published by the broker in the event that the client becomes
disconnected unexpectedly.

__

XXX-3

MQTT
Broker

Computer

Mobile
Device

Sensor
Publish “23C”

Topic “temp”

In summary, MQTT is a lightweight publish/subscribe messaging protocol that enables efficient
communication between devices in low-bandwidth, high-latency, or unreliable network environments. It uses
a broker to mediate communication between publishers and subscribers, and supports a range of QoS levels,
Keep Alive mechanism, and LWT feature for reliable and fault-tolerant messaging.

Figure 1: MQTT protocol

__

XXX-4

2 SECURITY

MQTT is a protocol that runs over TCP/IP and does not provide security measures itself, but it can be
implemented with security measures to ensure secure communication between the client and the broker.

2.1 Encryption and authentication

MQTT does support the use of security measures such as SSL/TLS encryption, which provides a secure
communication channel between the client and the broker. When SSL/TLS encryption is enabled, all data
transmitted between the client and the broker is encrypted and cannot be intercepted by a third party.
Additionally, MQTT supports authentication mechanisms, such as username and password, to ensure that only
authorized clients can connect to the broker. Access control lists (ACLs) can also be used to restrict the
operations that clients can perform on the broker.
In this proposal, we recommend to restrict communication to only use TLS 1.2 or higher and the dedicated
Secure-MQTT port 8883.

Figure 2: MQTT Security, Courtesy of Cirrus Link

2.2 One way or two way communication

For extremely critical infrastructure of Aids to Navigation (AtoN), or when remote commands are considered
unnecessary, the implementation can be limited to only offer inbound messages from the remote AtoN. In
such cases, the asset would not be capable of processing remote commands. This can be seen as analogous
to the difference between AIS Type 1 and Type 3, where Type 1 does not include a receiver.

TCP/IP

Only 8883 and 443
Inbound Ports Open

TLS Security

On Premise or Cloud Network

Initiates Outbound
TLS Connection

Edge Network
MQTT Edge Client Device

F
i
r
e
w
a
l
l

Access Control Lists
(ACLs)

Username / Password
Authentication

No Open
Inbound Ports

F
i
r
e
w
a
l
l

MQTT
Server

__

XXX-5

3 MESSAGE STRUCTURE

It is not enough to only standardize on using MQTT as the connectivity protocol. In order to reach full
compatibility between different providers it is necessary to use a common message structure in the payload.
The proposed structure is based upon JSON (JavaScript Object Notation).

JSON is a lightweight data interchange format that is easy to read and write for humans, and relatively easy to
parse and generate for machines. The main reasons to use JSON, is that JSON is a platform-independent data
format, which means it can be used with any programming language or platform.

JSON is a well-established format that is widely used for data-interchange, with support for parsing and
generating JSON built into many programming languages and frameworks.

The following example shows a possible JSON representation describing a person.

Figure 3: Example of JSON syntax, https://en.wikipedia.org/wiki/JSON

Please find the complete proposed communication protocol in Appendix A, Draft Visual AtoN MQTT Protocol.

https://en.wikipedia.org/wiki/JSON

__

XXX-6

4 WORKING WITH DIFFERENT COMMUNICATION PLATFORMS

In cases where the AtoN is connected using TCP/IP, MQTT can be implemented in the AtoN itself with direct
MQTT communication to the Broker. The new GSM standard for IoT devices, LTE-M (Long Term Evolution for
Machines), is perhaps the most suitable for this purpose. Low cost and low-power LTE-M modules capable of
native encrypted MQTT are already widely available.

Offshore, or in other places where internet connection is not an option, there are many indirect possibilities
using a proprietary network with an added MQTT gateway to relay the messages to the MQTT IoT platform.
Examples of this are iridium, inmarsat, Globalstar and LoRaWAN / Sigfox to name a few.

It´s not necessary to build such integration from scratch. There are both on premises and cloud based systems
available for fast integration. An example of a solution with LoRaWAN to MQTT using HiveMQ broker is shown
in the Figure 4 below.

Figure 4: LoRaWAN MQTT Broker, HiveMQ GmBH

https://www.hivemq.com/blog/lorawan-and-mqtt-integrations-for-iot-applications-design/

https://www.hivemq.com/blog/lorawan-and-mqtt-integrations-for-iot-applications-design/

__

XXX-7

5 CONCLUSIONS

MQTT is a lightweight publish/subscribe messaging protocol that enables efficient and frequent
communication between devices in low-bandwidth, high-latency, or unreliable network environments. It
supports SSL/TLS encryption enabling secure and authenticated communication. Used in conjunction with
JSON, which is a platform-independent data format, it can be used with any programming language or
platform.

Both MQTT and JSON are non-propriety and royalty free. Many open source platforms and libraries are
available to support easy integration/adaptation.

IALA is invited to adopt this protocol and message structure as the standard IALA Visual AtoN Protocol (IVAP)
to use so that members with a mixed network from various Industrial Members have the ability to monitor
them in a single platform.

__

XXX-8

6 APPENDIX A, DRAFT VISUAL ATON MQTT PROTOCOL

6.1 Topic names

Each topic contain least four fields and optional device name:
1. First level topic name describe topic purpose, e.g. telematics topic, information topic, etc. First level

topic names are described below.
2. Second and third level topic contain location or region, eg. estonia/tallinn
3. Fourth level topic contain site name, eg. soderskar-lighthouse
4. Fifth level contain device name or identificator

First level topic names:

1. ’tele’ – telemetry information. Device issued automatic monitoring data.
Example:
tele/<location1>/<location2>/<site name>
tele/<location1>/<location2>/<site name><device x>

2. ’info’ – device information. Device ID, capabilities. Etc.
Example:
info/<location1>/<location2>/<site name>
info/<location1>/<location2>/<site name>/res
info/<location1>/<location2>/<site name><device x>
info/<location1>/<location2>/<site name><device x>/res

3. ’cmd’ – command, can trigger telemetry response
Example:
cmd/<location1>/<location2>/<site name>
cmd/<location1>/<location2>/<site name>/res
cmd/<location1>/<location2>/<site name><device x>
cmd/<location1>/<location2>/<site name><device x>/res

4. ’parameter’ – get or set parameter(s)
Example:
parameter/<location1>/<location2>/<site name>
parameter/<location1>/<location2>/<site name>/res
parameter/<location1>/<location2>/<site name><device x>
parameter/<location1>/<location2>/<site name><device x>/res

5. ’direct’ – device specific data that can be used for implement custom protocols inside device, like
Modbus.

Example:
direct/<location1>/<location2>/<site name>
direct/<location1>/<location2>/<site name>/res
OR
direct/<location1>/<location2>/<site name><device x>
direct/<location1>/<location2>/<site name><device x>/res

__

XXX-9

Subscribe example:
1. Subscribe to all telemetry messages

tele/#
2. Subscribe to all telemetry messages in region named ’Country1’

tele/country1/#
3. Subscribe to all telemetry messages in region named ’country1/north-territory’

tele/country1/north-territory/#
4. Subscribe to telemetry messages which come from ’Lighthouse1’ in ’country1/north- territory’ region

tele/country1/north-territory/Lighthouse1/
5. Subscribe to telemetry messages which issued by telematics module, and flasher1 and flasher2

tele/country1/north-territory/Lighthouse1/telematics
tele/country1/north-territory/Lighthouse1/flasher1
tele/country1/north-territory/Lighthouse1/flasher2

6.2 Communication sequence

Every connection should subscribe to following topics:

 Command (’cmd’ topic)

 Parameter

6.2.1 Telemetry information

 Device connect to broker and send:

◦ Telemetry packet. Depending on configuration this may be repeated during session

 Device disconnect from broker

6.2.2 Info

 Device connect to broker, and send following data

◦ Subscribe for topics

◦ Telemetry packet

◦ Server ask info

◦ Device send info topic

◦ Server send done

 Device disconnect from broker

6.2.3 Set parameters

 Device connect to broker, and send following data

◦ Subscribe for topics

◦ Telemetry packet

◦ Server ask parameter

◦ Device send parameter

__

XXX-10

◦ Device update parameter

◦ Server send done

 Device disconnect from broker

6.3 Payload format

Payload have two different formats: unencrypted JSON format, and encrypted format.

 Byte 0 Byte 1 Byte n

JSON ’{’ Unencrypted JSON data

Encrypted data ’E’ Unused, should be 0 Encrypted binary data

When unencrypted JSON data is used in MQTT payload, only plain JSON messages transmitted, no data is
added. JSON data should be follow format published in https://www.json.org/json-en.html.

When payload is encrypted, then first byte must be ’E’ (ASCII 0x45) and second byte is reserved and should
have value 0x00. All subsequent bytes are encrypted JSON data. Unencrypted payload must be multiple of 16
(AES requirement), it is recommended to fill unused bytes with random data after terminating 0x00 in JSON
string.

6.4 Payload data

6.4.1 General payload data rules

1. Payload is in JSON format (https://www.json.org/json-en.html).

2. Property names are only ASCII.

3. Maximum property name length is 32 characters.

4. In property names are allowed only lower case letters (’a’ – ’z’) and numbers. ’-’ (minus) is used to

separate words in property names.

5. Property values are UTF-8 encoded strings.

6. Not recommended property name is ”class”.

7. User defined properties are allowed, but must follow above listed limits.

8. All optional properties can be omitted or have null value when data is invalid. Non-optional

properties should have default value in case of invalid data.

6.4.2 Topic ’tele’ – status information

Minimal JSON message for generic device:

{

 "session-id": "session-1",

 "status": "ready",

 "uptime": 20

}

https://www.json.org/json-en.html
https://www.json.org/json-en.html

__

XXX-11

6.4.2.1 Session ID

 This property is mandatory

 Property name: ’session-id’

 Description: can be monotonic counter, e.g. timer or session counter

 Example: "session-id": "session-820923084792"

6.4.2.2 Status

 This property is mandatory

 Property name: ’status’

 Allowed values: init, ready, alert, suspend

◦ init – least one component to initialize, default value

◦ ready – system is fully functional, e.g. lantern is switched on

◦ alert – alarm condition detected, e.g. low battery

◦ suspend – when system is switched off but it is functional, e.g. storage state. This field is not

required on devices which does not have suspend state

6.4.2.3 Uptime

 This property is mandatory

 Property name: ’uptime’

 Seconds from last boot. Default value is 0.

 Example: "uptime": 211

6.4.2.4 Time

 Required only on devices with RTC clock

 Property name: ’time’

 Description: device UTC time, default value is 0

 Allowed values: seconds from January 1st, 1970 at UTC (UNIX time). Only positive values allowed.

 Example: "time": 1673564596

6.4.2.5 Alert status

 Only required when device status is ’alert’

 Property name: ’alert’

 Description: list of alert statuses. If device operates normally and don’t have any alerts, then this

property may be omitted or set value to ’none’. Possible values:

__

XXX-12

◦ none, default value

◦ light-fail

◦ low-battery

◦ gnss-error

◦ off-location

◦ overheated

◦ etc...

 Example, two alerts: "alert": ["low-battery", "off-location"]

6.4.2.6 Beacon status

 Mandatory only on beacons. ’type’ field in info message should be ’beacon’.

 Property name: ’beacon-status’

 Allowed values:

◦ on-main-character – main or night character

◦ on-alternative-character – alternative or day character

◦ off – not flashing, default value

 Example: "beacon-status": "on-main-character"

6.4.2.7 Device temperature

 Only on devices which have temperature sensor.

 Property name: ’temperature’

 Contains following sub properties:

◦ ’last’ – last read temperature

◦ ’max’ – maximum temperature in last 24 hours, optional

◦ ’min’ – minimum temperature in last 24 hours, optional

◦ ’avg’ – average temperature in last 24 hours, optional

 Allowed values: floating point value

 Example, valid temperature: "temperature": {"last": 21.0, "max": 25, "min": 19, "avg": 22}

6.4.2.8 Battery voltage

 Only on devices which can measure battery voltage

 Property name: ’voltage’

 Contains following sub properties:

__

XXX-13

◦ ’average’ – last battery voltage, averaged over one flash cycle

◦ ’loaded’’ – last measured battery voltage under load condition, optional

◦ ’unloaded’’ – last measured battery voltage under no-load condition, optional

◦ ’max’ – maximum battery voltage under no-load condition in last 24 hour, optional

◦ ’min’ – minimum battery voltage under load condition in last 24 hours, optional

 Allowed values: positive floating point value

 Example, valid battery voltage: "voltage": {"average": 12.3, "loaded": 12.1, "unloaded": 12.5, "max":

13.3, "min": 11.5}

6.4.2.9 Location

 Only on devices with GNSS receiver

 Property name: ’position’

 Description: JSON array of floating point values with last GNSS position, exact method how this value

is computed is implementation defined

 Allowed values: degrees for latitude -90.0/90.0, and for longitude -180.0/180.0

 Example: "position": [60.0, 110.0]

6.4.2.10 Deviation

 Only on devices with GNSS receiver

 Property name: ’position-deviation’

 Description: Floating point value of deviation in meters from GNSS fixed position. Exact method how

this value is computed is implementation defined

 Allowed values: positive floating point value

 Example: "position-deviation": 10.0

6.4.2.11 Last GNSS fix time

 Only on devices with GNSS receiver

 Property name: ’position-time’

 Description: Floating point value of UTC time derived from GNSS.

 Allowed values: seconds from January 1st, 1970 at UTC (UNIX time). Only positive values allowed.

 Example: "position-time": 1673564596

6.4.2.12 GNSS quality indicator

 Only on devices with GNSS receiver

__

XXX-14

 Property name: ’position-quality’

 Description: Floating point value of CSQ value

 Allowed values: only positive floating point values allowed

 Example: "position-quality": 1.1

6.4.2.13 Ambient light level measured by the light sensor

 Only on devices that can measure ambient light level.

 Property name: ’ambient-light-level’

 Description: Ambient light level measured in lux

 Allowed values: only positive floating point values allowed

 Example: "ambient-light-level": 30

6.4.2.14 Network statistics

 Optional. If present must contain all sub properties

 Property name: ’network-statistics’

 Description: contains nested statistics information

 Allowed values: positive value, default value is 0

 Example: "network-statistics": {"succeeded-server-connections": 2, "failed-server-connections": 0,

"succeeded-network-logins": 2, "failed-network-logins": 2}

Amount of succeeded server connections

 Property name: ’succeeded-server-connections’

 Description: number connections between server and broker that have valid end.

 Allowed values: positive value, default value is 0

 Example: "succeeded-server-connections": 2

Amount of failed connections

 Optional. All network statistics data should be present in together: ’succeeded-server-

connections’, ’failed-server-connections’, ’succeeded-network-logins’ and ’failed-network-logins’.

 Property name: ’failed-server-connections’

 Description: number connections between server and broker that have no valid end.

 Allowed values: positive value, default value is 0

 Example: "failed-server-connections": 0

__

XXX-15

Amount of succeeded network logins

 Optional. All network statistics data should be present in together: ’succeeded-server-

connections’, ’failed-server-connections’, ’succeeded-network-logins’ and ’failed-network-logins’.

 Property name: ’succeeded-network-logins’

 Description: number of succeeded network logins

 Allowed values: positive value, default value is 0

 Example: "succeeded-network-logins": 2

Amount of failed network logins

 Optional. All network statistics data should be present in together: ’succeeded-server-

connections’, ’failed-server-connections’, ’succeeded-network-logins’ and ’failed-network-logins’.

 Property name: ’failed-network-logins’

 Description: number of failed network logins

 Allowed values: positive value, default value is 0

 Example: "failed-network-logins": 2

6.4.2.15 Last reset source

 Optional

 Property name: ’last-reset-source’

 Description: number of resets starting from production

 Allowed values:

◦ por – power on reset

◦ wdr – watchdog reset

◦ rst – reset from external reset signal (HW signal)

◦ bor – brown-out reset

◦ usr – reset triggered by command, e.g. SMS reset command

◦ other – all other reset sources

 Example: "last-reset-source": "wdt"

__

XXX-16

6.4.2.16 Reset count

 Optional and only when last reset source is present. This property have nested properties with reset

names defined in Last Reset sources.

 Property name: ’reset-count’

 Allowed values: positive value, default value is 0

 Example: "reset-count": {"por":30, "wdr":1}

6.4.3 Topic ’info’

Info is triggered by ’cmd’ topic ’"send": "info"’

6.4.3.1 Protocol version

 This property is mandatory.

 Property name: ’protocol-version’

 Integer to describe protocol version. Currently supported value is 1.

 Example: "protocol-version": 1

6.4.3.2 Type

 This property is mandatory

 Property name: ’type’

 Description: device type class

◦ ’group’ – logical container for device group

◦ ’beacon’ – for beacons

 Example: "type": "beacon"

6.4.3.3 System information

 This property is mandatory. This information can be used to set up optimal set/get transmission

packet sizes.

 Property name: ’sys-info’

 Description: system parameters

◦ ’rx-buf’ – size of rx buffer in bytes, -1 means infinite

◦ ’tx-buf’ – size of tx buffer in bytes, -1 means infinite

 Example: "sys-info": [{"rx-buf": 512}, {"tx-buf": 512}]

__

XXX-17

6.4.3.4 Serial number

 This property is mandatory for non group devices

 Property name: ’serial-nr’

 Description: device serial number, this number may contain product code also, if product code and

serial number are not related then ’product-code’ property show product code

6.4.3.5 Product code

 Required only when serial number does not have product information

 Property name: ’product-code’

 Description: device product code

6.4.3.6 Firmware version

 This property is mandatory for non-group devices

 Property name: ’firmware-version’

 Description: device firmware version

6.4.3.7 Component info

 Only for device which have components with own version

 Property name: ’component-info’

 Description: device component version list, like onboard GNSS receiver.

 Example: "component-info": [{"gnss-version":"1.0"}, {"gnss-type":"NEO M8N"}]

6.4.3.8 Limits

 Optional property. Not required to list all parameters.

 Property name: ’limits’

 Description: returns list of device limit values, for example maximum allowed light intensity, maximum
battery voltage, etc. Limit values and value names must match with same configuration parameters.

 Example: "limits": [{"light-intensity":1000}, {"low-voltage-level":6.0}]

__

XXX-18

6.4.4 Topic ’cmd’

This topic is for server initiated actions.

6.4.4.1 Send

 Required

 Property name: ’send’

 Description: send requested topic

 Allowed values:

◦ tele – for telematics

◦ info – for information

 Example: "send": "info"

6.4.4.2 Reset

 Property name: ’reset’

 Description: reset device or parameter

 Allowed values:

◦ null, empty string or ’reset’– reset device (required)

◦ parameters – reset all parameters (optional)

◦ <parameter-name> – reset parameter name to default (optional)

 Example: "reset": null

6.4.4.3 Done

 Required

 Property name: ’done’

 Description: this is hint from server, that server has been completed all tasks and controller if free to

disconnect from broker. It depends on client configuration if it disconnects immediately or send

telematics packets. If server send packet after ’done’ message then for disconnect is needed re-

send ’done’ message. If server does not send ’done’ message then controller can disconnect if last

message from server was more than X seconds ago.

 Allowed values: any string

 Example: "done": "ok"

__

XXX-19

6.4.4.4 Light on demand

 Optional

 Property name: ’light-on-demand’

 Description: start light on demand, parameters describe how many seconds is light on demand mode

is active. Device returns normal operation after this time is elapsed. This command allows to specify

optional intensity for light on demand operation.

 Contains following sub properties:

 ’timeout’ – last battery voltage, averaged over one flash cycle

◦ -1 – light on demand is active until switched off

◦ 0 – light on demand switched off

◦ 1...2147483648 – seconds active

 ’intensity’ – effective intensity in cd, optional

 Example: "light-on-demand": {"timeout": 3600, "intensity": 300}

 Light activated for one hour with 300 cd effective intensity

6.4.4.5 Fix position

 Optional

 Property name: ’fix-position’

 Description: start or stop GNSS position fix

 Allowed values:

◦ start – start positon fix

◦ stop – stop position fix

 Example: "fix-position": "start"

6.4.5 Topics ’parameter’

Set or get configuration parameter. All get commands must have ’res-topic’ property. All topic queries have
parameter value null.

Get

{

 "res-topic": "get/locationa/locationb/site/device1/res",

 "time": null

 "light-intensity": null

}

Response to get/locationa/locationb/site/device1/res

__

XXX-20

{

 "session-id": "session-1",

 "time": 1677677908

 "light-intensity": 34

}

Set

{

 "res-topic": "get/locationa/locationb/site/device1/res",

 "time": 1677679999

 "light-intensity": 30

}

6.4.5.1 Date and time

 Property name: ’time’

 Description: set or get time

 Allowed values:

◦ null – query from server

◦ any positive number – set or get result

6.4.5.2 Light intensity

 Property name: ’light-intensity’

 Description: set or get effective light intensity in candelas.

 Allowed values:

◦ null – query from server

◦ any positive number to max allowed value – light intensity in candelas

Note: Max allowed ’light-intensity’ is retrieved with the ’info’ Topic.

6.4.5.3 Ambient light threshold

 Property name: ’ambient-light-threshold

 Description: set or get ambient light threshold levels in lux. Minimum ambient light level triggering

beacon activation.

 Allowed values:

◦ null – query from server

◦ any positive number – light level in lux

__

XXX-21

6.4.5.4 Maximum allowed distance from fix position

 Property name: ’distance-from-fix’

 Description: set or get distance from fix position

 Allowed values:

◦ null – query from server

◦ any positive floating point number – distance from fix

6.4.5.5 Latitude and longitude of fix position

 Property name: ’fix-position’

 Description: set or get latitude and longitude of fix position. Array, where first value is latitude and

second value longitude. Positive values indicate Northern latitudes and Eastern longitudes.

 Allowed values:

◦ null – query from server

◦ degrees for latitude -90.0/90.0, and for longitude -180.0/180.0

6.4.5.6 Telemetry

 Property name: ’telemetry’

 Description: common property for telemetry

 Allowed sub properties

◦ report-mode – telemetry report mode

◦ report-period – telemetry report period

Telemetry report mode

 Property name: ’report-mode’

 Description: set or get telemetry report mode

 Allowed values:

◦ null – query from server

◦ off – telemetry data is sent only after query with ’cmd’

◦ utc-fixed – UTC fixed mode, for example 00:00, 00:05, 00:10, To spread simultaneous

sessions, can be added delay to this period. Delay length is implementation defined, for example

delay seconds can be calculated from device serial number.

◦ interval – interval mode, for example every 3 minutes, not fixed to UTC

◦ on-failure – only when error condition is detected

__

XXX-22

Telemetry report period

 Property name: ’report-period’

 Description: set or get telemetry report period

 Allowed values:

◦ null – query from server

◦ 0 – disable telemetry period, telemetry is sent only after query

◦ any positive number – telemetry period in seconds

APN

 Property name: ’apn’

 Description: set or get APN

 Allowed values

◦ null – query from server

◦ string – APN name

APN user

 Property name: ’apn-user’

 Description: set or get APN

 Allowed values

◦ null – query from server

◦ string – APN user name

APN password

 Property name: ’apn-password’

 Description: set or get APN

 Allowed values

◦ null – query from server

◦ string – APN password

Broker address

 Property name: ’broker-address’

 Description: set or get broker address. Currently used address will not be changed.

 Allowed values

◦ null – query from server

◦ list of addresses with port, may contain current address

__

XXX-23

6.4.5.7 Low voltage level

 Property name: ’low-voltage-level’

 Description: set or get low voltage level

 Allowed values:

◦ null – query from server

◦ any positive floating point number – voltage level

6.4.5.8 GNSS

 Property name: ’gnss’

 Description: common property for GNSS

 Allowed sub properties

◦ base – GNSS wakeup base

◦ interval – interval of GNSS time and position checkup

◦ duration – duration of GNSS time and position checkup

◦ sync – flash code synchronization base

GNSS base

 Property name: ’base’

 Description: select GNSS wakeup base

 Allowed values:

◦ async – not synchronized with other threads (this is default)

◦ pre-telematics – always before telematics (optional). In this mode GNSS start ’duration’ seconds

before telematics and after task is completed then start telematics. If interval is set then GNSS

started before telematics and repeated with interval. If telemetry is disabled, then this option

does not have any effect.

◦ utc – synchronized with UTC (optional)

GNSS interval

 Property name: ’interval’

 Description: set or get time interval for GNSS time and position checkup

 Allowed values:

◦ null – query from server

◦ 0 – disable GNSS time and position periodical checkup

◦ any positive number – interval in seconds

__

XXX-24

GNSS duration

 Property name: ’duration’

 Description: set or get duration for GNSS time and position checkup

 Allowed values:

◦ null – query from server

◦ 0 – disable GNSS time and position checkup

◦ any positive number – duration in seconds

GNSS sync

 Property name: ’sync’

 Description: set or get GNSS-guided synchronization of flash code

 Allowed values:

◦ off – GNSS sync disabled

◦ on – GNSS sync is enabled, this is equal with ’utc’

◦ utc – UTC based GNSS sync (start of flash adjusted to UTC 00:00:00)

◦ gps – GPS time based GNSS sync (start of flash adjusted to GPS 00:00:00)

6.4.5.9 Beacon flash character

 Property name: ’flash-code’

 Description: set or get beacon flash character

 Allowed values:

◦ null – flashing is disabled

◦ "flash-code": {"main": [{"on":ms}, {"off":ms}, ...], "secondary" : [{"on":ms}, {"off":ms}, ...]}

6.4.6 Topic ’direct’

Direct commands to device. For example Modbus packets.

 Only single device

 Must contain ’res-topic’ and ’data’ properties

◦ ’res-topic’ property describe response topic name

◦ ’data’ property contains data in device specific format

 Example: {"res-topic”: ”direct/locationa/locationb/site/device1/res", "data": "10AB"}

__

XXX-25

Useful references:

 https://github.com/kokke/tiny-ECDH-c

 https://stackoverflow.com/questions/6032675/diffie-hellman-test-vectors

 https://www.techiedelight.com/c-program-demonstrate-diffie-hellman-algorithm/

 https://www.oryx-embedded.com/doc/dh_8c_source.html

 https://github.com/parthendo/thrain

 https://github.com/terlan98/Diffie-Hellman-and-AES

 https://github.com/ojan2021/AES_and_DiffieHellman_Implementation

 https://www.programmingboss.com/2015/11/diffie-hellman-key-exchange-algorithm.html

 https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-augpake-08

https://github.com/kokke/tiny-ECDH-c
https://stackoverflow.com/questions/6032675/diffie-hellman-test-vectors
https://www.techiedelight.com/c-program-demonstrate-diffie-hellman-algorithm/
https://www.oryx-embedded.com/doc/dh_8c_source.html
https://github.com/parthendo/thrain
https://github.com/terlan98/Diffie-Hellman-and-AES
https://github.com/ojan2021/AES_and_DiffieHellman_Implementation
https://www.programmingboss.com/2015/11/diffie-hellman-key-exchange-algorithm.html
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-augpake-08

	ABSTRACT
	1 Standardized protocol
	1.1 MQTT

	2 Security
	2.1 Encryption and authentication
	2.2 One way or two way communication

	3 Message structure
	4 Working with different communication platforms
	5 Conclusions
	6 Appendix A, Draft Visual AtoN MQTT Protocol
	6.1 Topic names
	6.2 Communication sequence
	6.2.1 Telemetry information
	6.2.2 Info
	6.2.3 Set parameters

	6.3 Payload format
	6.4 Payload data
	6.4.1 General payload data rules
	6.4.2 Topic ’tele’ – status information
	1
	2
	3
	4
	5
	6
	6.1
	6.2
	6.3
	6.4
	6.4.1
	6.4.2
	6.4.2.1 Session ID
	6.4.2.2 Status
	6.4.2.3 Uptime
	6.4.2.4 Time
	6.4.2.5 Alert status
	6.4.2.6 Beacon status
	6.4.2.7 Device temperature
	6.4.2.8 Battery voltage
	6.4.2.9 Location
	6.4.2.10 Deviation
	6.4.2.11 Last GNSS fix time
	6.4.2.12 GNSS quality indicator
	6.4.2.13 Ambient light level measured by the light sensor
	6.4.2.14 Network statistics
	6.4.2.15 Last reset source
	6.4.2.16 Reset count

	6.4.3 Topic ’info’
	6.4.3.1 Protocol version
	6.4.3.2 Type
	6.4.3.3 System information
	6.4.3.4 Serial number
	6.4.3.5 Product code
	6.4.3.6 Firmware version
	6.4.3.7 Component info
	6.4.3.8 Limits

	6.4.4 Topic ’cmd’
	6.4.4.1 Send
	6.4.4.2 Reset
	6.4.4.3 Done
	6.4.4.4 Light on demand
	6.4.4.5 Fix position

	6.4.5 Topics ’parameter’
	6.4.5
	6.4.5.1 Date and time
	6.4.5.2 Light intensity
	6.4.5.3 Ambient light threshold
	6.4.5.4 Maximum allowed distance from fix position
	6.4.5.5 Latitude and longitude of fix position
	6.4.5.6 Telemetry
	6.4.5.7 Low voltage level
	6.4.5.8 GNSS
	6.4.5.9 Beacon flash character

	6.4.6 Topic ’direct’

